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THROUGH-SPACE HYDROGEN-FLUORINE AND CARBON-FLUORINE SPIN-SPIN COUPLING 

IN 5-FLUORO-3,3-DIMETHYL-1,2,3,4-TETRAHYDROPHENANTHRENE 

Gordon W. Gribble* and William J. Kelly 

Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755 

Summary: The 'H and 13C NMR spectra of the title compound (1) reveal through-space couplings 
between the fluorine and the C-4 methylene group cfH and 13C), as well as coupling 
between the fluorine and the C-3 methine carbon and the C-2 methylene carbon. 

"Through-Space" or "proximate" spin-spin coupling between fluorine and other magnetic 

nuclei (lH, 13C, lg F) is firmly established as an NMR phenomenon.' Although it is clear from 

theoretical studies2 that these interactions--particularly H-F coupling--depend both on 

proximity and bond orientation effects, very few experimental systems have been designed in 

which both factors.can be studied. One such, recent example is the elegant work of oki who 

observed through-space coupling between fluorine and the individual protons in a "frozen" 

methyl group at low temperature in 8,13-dichloro-1,2,3,4-tetrafluoro-9-methyltriptycene. 

In this Letter we describe the synthesis and NMR spectra of 5-fluoro-3,3-dimethyl- 

1,2,3,4_tetrahydrophenanthrene (L), a system designed to approximate4 the corresponding 

"frozen" methyl rotamer in 8-fluoro-1-methylnaphthalene (2)5 and &fluoro-N-methylquinolinium - 

salts (A),2 molecules for which pronounced through-space H-F and C-F couplings are observed, 

as shown below. 

1 (R=H,D) 2 3 

3779 



3780 

Our syntheses of 1 and the 8-fluoro isomer 11 are summarized in Scheme I, the key steps 

being a Diels-Alder reaction between pyrrole Land 3-fluorobensyne (z), and the oxldative 

deamination with g-chloroperbenzoic acid (CPBA)6 of the easily separated and distinguishable7 

imines 9 and 10. We chose to study the compound having dimethyl and deuterium substitution at - - 

C(3) and C(l), respectively, in order to simplify the NMR spectra of 1. 

Scheme I 
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The 'H and 13C NMR spectra of lla reveal no observable coupling between the fluorine atom 

and any of the aliphatic protons or carbons. l6 However, the corresponding spectra of _& (and 

lb) indicate several through-space couplings involving the fluorine atom. Thus, the C(4) - 

methylene protons are coupled to lgF: 5J HF = k5.1 Ha, a value which is comparable to the i6.1 

Hz observed by Oki for the corresponding syn-clinal protons in a frozen methyl rotor, and to 

the i 4.8 Hz observed by Heaney18 in a related system. The sign of 5JHF ingis assumed to 

be positive based on the positive 5JHF determined* for 3 and the results of Oki who showed _ 

that all three protons in a frozen methyl rotor are coupled to the fluorine atom with the same 

sign. Theoretical arguments, based on the INDO-FPT method,* predict opposite signs for the 

coupling involving syn and anti protons in a frozen methyl system. The origin of this 

discrepancy between theory and experiment remains unknown.lg 
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Of particular interest are the 13C-lgF splittings observed in the 13C NMR spectrum of 1. 

In addition to the expected coupling to the C(4) methylene group: 4JCF = f13.3 Hz, there is 

observed coupling between the fluorine and C(3): 5JCF = k3.8 Hz; and C(2): 6JCF = fl.O Hz. 

These latter through-space "zig-zag" couplings are apparently unprecedented2' and may result 

from favorable non-bonded interactions between the fluorine and molecular orbitals associated 

with the C(4)-C(3)-C(2) carbon framework. In accord with this "zig-zag" mechanism we observe 

no splitting of the methyl carbons by the fluorine. A similar zig-zag angular dependence has 

been observed for vicinal C-C couplings (3J,c) in alkanes.21 

We believe that these coupling constants further illustrate the importance of nonbonded 

interactions between a fluorine and a proximate carbon atom (i.e., C(4) in 1> in through-space 

H-F and C-F coupling, as suggested by ServisZ2 and later extended by Mallory.23 Finally, these 

data would appear to contradict the "converging-vector rule" for through-space H-F coupling.24 
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